Cryptosporidiosis: Human, animal and environmental interface in the Liffey and Lough Gill catchments

Theo de Waal
Outline

- Introduction & Background
- Cryptosporidium in humans
- Cryptosporidium in animals
- Cryptosporidium in surface water
- Conclusion
Cryptosporidium life cycle

- Direct life cycle
- Sporulated oocyst → environment
- Transmission: faecal-oral route
 - Waterborne
 - Foodborne
- Infect microvillus border of GIT – vertebrates
 - 3 spp: Gastric mucosa
 - 1 sp: Respiratory system
Very resistant!
- Oocysts can remain viable in environment & animal liquid waste ~ 1 year
- Resistant to environmental stressors
- Resistant to most chemical disinfectants

http://www.bio-uv.com/fr/site/Piscines-spas-collectifs/Prevention-Cryptosporidium/Prevention-contre-les-pathogenes-parasitaires_129_.html
Cryptosporidium spp: Human

- 17 known Cryptosporidium species
 - 39 Cryptosporidium genotypes
- 9 Cryptosporidium species reported from human cases in England & Wales:
 - C. hominis (50.29%)
 - C. parvum (45.6%)
 - C. meleagridis (0.8%)
- Ireland:
 - C. hominis (20%)
 - C. parvum (80%)
 - C. meleagridis
 - C. deer genotype

Cryptosporidium in Ireland: Human

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008 up to Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidiosis¹</td>
<td>431</td>
<td>568</td>
<td>367</td>
<td>609</td>
<td>360</td>
</tr>
</tbody>
</table>

Crude incidence rate:
- 8.7 – 13.4/100,000 annually
- Rural areas reported more cases
- Regional as high as 31.4/100,000 per year

¹Human cryptosporidiosis became a notifiable disease on January 1st 2004
Ireland: Seasonal distribution in humans

Figure 4. Seasonal distribution of cryptosporidiosis notifications 2005 to end quarter 3 2008
Cryptosporidium in Ireland: Animals

- Major cause of enteritis in neonatal animals
- Ireland - very little known
 - Calves
 - 2006: 25.9%\(^1\)
 - Pigs
 - 2005: 15%\(^2\)
 - Sheep/goats
 - ?

Cryptosporidium in Ireland: Animals

- Major cause of enteritis in neonatal animals
- Ireland - very little known
 - Horses
 - 1991: 29% of diarrhoeic foals
 - Commercial deer herd
 - 2001: Common & asymptomatic

Table 2
Mean oocyst counts for fecal samples taken from adult hinds from May 1996 to May 1997

<table>
<thead>
<tr>
<th>Month</th>
<th>n</th>
<th>No. of positive samples</th>
<th>Mean ± S.D. (opg)</th>
<th>Range (opg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>30</td>
<td>0</td>
<td>0.0 ± 0.0</td>
<td>0</td>
</tr>
<tr>
<td>June</td>
<td>30</td>
<td>19</td>
<td>321.4 ± 1030.3</td>
<td>0-4704</td>
</tr>
<tr>
<td>July</td>
<td>30</td>
<td>16</td>
<td>3.8 ± 3.3</td>
<td>0-12</td>
</tr>
<tr>
<td>August</td>
<td>30</td>
<td>14</td>
<td>2.8 ± 3.5</td>
<td>0-12</td>
</tr>
<tr>
<td>October</td>
<td>30</td>
<td>8</td>
<td>3.1 ± 4.0</td>
<td>0-15</td>
</tr>
<tr>
<td>November</td>
<td>30</td>
<td>17</td>
<td>3.8 ± 4.4</td>
<td>0-15</td>
</tr>
<tr>
<td>January</td>
<td>30</td>
<td>6</td>
<td>6.1 ± 27.9</td>
<td>0-148</td>
</tr>
<tr>
<td>February</td>
<td>20</td>
<td>9</td>
<td>3.9 ± 10.1</td>
<td>0-44</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
<td>12</td>
<td>3.7 ± 3.0</td>
<td>0-12</td>
</tr>
<tr>
<td>May</td>
<td>30</td>
<td>13</td>
<td>3796.8 ± 13503.4</td>
<td>0-67590</td>
</tr>
</tbody>
</table>

Cryptosporidium in Ireland: Environment

- Contamination of catchments used for drinking water abstraction has resulted in outbreaks of cryptosporidiosis worldwide
- Several Irish studies have detected *Cryptosporidium* species in Irish river basins\(^1,\)\(^2\)
- 2005 EPA risk assessment - Irish public water supply
 - 8% high risk
 - 13% very high risk
- Recent outbreaks in Ireland
 - Galway – 2007
 - \~240 confirmed cases

Research need

- Research should be undertaken to: Elucidate the prevalence, epidemiology and mode of transmission of Cryptosporidium in the Irish context*

Report of Waterborne Cryptosporidiosis Subcommittee of the Scientific Advisory Committee (2004)
Project objectives

- to identify the chief source(s) of *Cryptosporidium* oocysts in the environment during the spring peak
- to compile a database of *Cryptosporidium* species and subtypes that occur in livestock, wildlife, and the environment in 2 model water reservoir systems in the east and the west of the country.
- to identify species and subspecies that occur in the human population
Study area 1: Hydrometric Area 09

- Eastern River Basin District
- HA09 (The “Liffey Catchment Area”) - most densely populated hydrometric areas in Ireland
Study area 1: Hydrometric Area 09

- **Land use**
 - *Urban = 21%*
 - *Agricultural land = 61%*
 - Pastures = 46%;
 - Arable land and crop cultivation = 12%;
 - Managed forests = 3%
 - cattle in the middle catchment
 - sheep/forestry in the upper catchment
Study area 1: Hydrometric Area 09

- The Liffey Catchment area (HA09)
 - 676 km²
 - 503.7 km of river channels

- 6 significant abstractions from surface waters
 - Poulaphouca Reservoir
 - 252,000 m³/day
 - Leixlip Reservoir
 - 148,000 m³/day
Study area 2: Lough Gill

- Western River Basin District
- HA35 (The Lough Gill catchment)

- Relatively sparsely populated
- < 0.5 mill people
- Urban infrastructure
 - ~ 0.03% of the basin area
Study area 2: Lough Gill

- Lough Gill 2 km east of Sligo town
- 10th largest lake in RI
 - 8 km long x 3.5 km wide
 - steep limestone shores and underwater cliffs
 - over 20m deep in places
 - surface area of 14km²
- Catchment area 400km²
 - Cattle & sheep farming & deer population
- Main water supply for Sligo town
 - Two water treatment plants - Cairn’s Hill and Foxes Den
- Water supply for North Co. Leitrim
Project Team

- **University College Dublin**
 - Dr Theo de Waal
 - Dr Annetta Zintl, Ms Carolyn Read, Prof Grace Mulcahy
 - PhD student: Ms Marzieh Mirhashemi

- **Institute of Technology, Sligo**
 - Dr Frances Lucy
 - Technician: Mr Declan Feeney

- **USA: Johns Hopkins Bloomberg School of Public Health**
 - Prof Thaddeus Graczyk
 - Technician: Ms Leena Tamang

- Teagasc: Animal Production Research Centre
 - Dr Barbara Good

- **UK: Cryptosporidium Reference Unit**
 - Dr Rachel Chalmers

- **Fingal County Council**
 - Mr George Sharpson
Analysis of human Cryptosporidium isolates

- *Cryptosporidium* species and subspecies present in human cryptosporidiosis cases
 - 186 *Cryptosporidium*-positive human stool samples collected from Irish patients between 2000 and 2007
 - 95 stool samples submitted to the UK *Cryptosporidium* reference lab in 2008
Typing to species …

- Oocyst concentration
- DNA extraction
- PCR-RFLP analysis of the SSU rRNA (Xiao et al. 2001) and/or COWP loci (Spano et al. 1997; Pedraza-Diaz et al. 2001)

sequence analysis of the gp60 region (Peng et al 2001; Alves et al 2003)

>DQ192508.gp60-IIa allele

...CAGCCGTTCCACTCAGAGGAACTTTAAAGGATGTTCTCTGTTGAGGGC
TCA TCA TCG TCA TCG TCA TCG TCA TCA
ACATCAACCGTCGCACCAGCAAATAAAGGCAAGAACTGGAGAAGAA…

‘IIaA18G3R1’

Prevalence and seasonal distribution of Cryptosporidium spp

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. parvum</td>
<td>48</td>
<td>12</td>
<td>46</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>C. hominis</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>C. meleagrisidis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cervine gt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Seasonal distribution of Cryptosporidium spp (2005-2008) and average number of reported cases (__, right hand y axis)

C. ryanae
14 different gp60 subtypes identified

IIaA18G3R1 type most prevalent

Annual distribution of C. parvum gp60 subtypes

Annual distribution of Gp60 subtypes (2000-2008)
C. hominis gp60 subtypes

- 2008 (n=15): Detection of ‘new’ subtypes IbA9G3R1 (n=1) and IdA2 (n=2)
Geographical distribution of Cryptosporidium spp (2005-2008)
Cryptosporidium species and subspecies in livestock and wildlife spp.

- Lough Gill catchment
 - 4 Cattle, 3 Sheep and 1 Cattle/Sheep farms
- Liffey catchments
 - 3 Cattle, 3 Sheep, 3 Horse farms

<table>
<thead>
<tr>
<th>Month</th>
<th>Liffey catchments</th>
<th>Lough Gill catchment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cattle</td>
<td>Sheep</td>
</tr>
<tr>
<td>March</td>
<td>13</td>
<td>48</td>
</tr>
<tr>
<td>April</td>
<td>13</td>
<td>48</td>
</tr>
<tr>
<td>May</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>June</td>
<td>22</td>
<td>30</td>
</tr>
</tbody>
</table>
Sample processing

Faecal sample

- ELISA
- Sugar Flotation

Smear preparation

DNA extraction

- 18S rRNA - Nested PCR

IFAT

Kinyon's stain
Comparison of different techniques on cattle samples

Comparison of different techniques on sheep fecal samples
Environmental sampling 2009

- Sampling
 - Lough Gill & Liffey Catchment
 - Winter - January
 - Spring/Summer – March, April, May, June, July
 - Autumn – October

- Biomonitors
Biomonitors

Asellus aquaticus - water hoglouse
- 30 minute sample
- Four sites on the River Liffey
 - Sites downstream of storm-water sewage overflows

Dreissena polymorpha, zebra mussels
- 300g
- Four sites at Lough Gill
- Analysis by IFA, FISH\(^1\) and nested PCR\(^2\)

\(^1\)Graczyk, et al., 2006. *Applied Environmental Microbiology*; 72: 3390-3395
Biomonitoring Results – River Liffey

Cryptosporidium oocysts in Asellus collected from River Liffey

<table>
<thead>
<tr>
<th>Location</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sallins</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Clane</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Abbeycourt</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Castletown</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

C. parvum
Lough Gill – Zebra Mussel Samples
Biomonitoring Results – Lough Gill

Cryptosporidium oocysts in *zebra mussel* collected from Lough Gill lake.

<table>
<thead>
<tr>
<th>Location</th>
<th>January</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazelwood</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Parkes Castle</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Inishfree</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Whitewood</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Sligo Intake</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Holywell</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Drinking Water Plant</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

C. parvum
Humans

- *C. parvum* predominant, spring peak
- *C. hominis*: weak bi-modal pattern
- *C. meleagris*, *C. ryanae* first reported in 2008
- gp60 subtypes
 - *C. parvum* - IIaA18G3R1 predominant in all parts of the country
 - *C. hominis* - IbA10G2R1 predominates
Summary & Conclusions

- **Animals**
 - IFAT useful screening techniques
 - ~28% samples PCR+

- **Environment**
 - Hoglouse & Zebra mussels good biomonitors
 - *Cryptosporidium* detected in all sites
Acknowledgements

- Human study
 - Annetta Zintl

- Animal study
 - Marzieh Mirhashemi

- Environmental study
 - Frances Lucy, Declan Feeney
 - Thaddeus Graczyk, Leena Tamang

- Funding
 - EPA – STRIVE programme
"RAW SEWAGE IN THE CORRIB? NO-ONE KNEW?
GO BACK TO SLEEP,
GALWAY, GO BACK TO SLEEP."

Woohoo!
It's over!
No more brushing
my teeth
with beer.