UDL Conference
Climbing the UDL Ladder:
Building a Culture of Inclusion in Higher Education
Assessment Without Borders: Accessible assessment techniques and evaluation tools.

Mr Paul Ferry
Institute of Technology Sligo
Assistant Lecturer
Mechanical & Manufacturing Engineering Department
My UDL Journey

Accessibility

Perception

Physical Action

Recruiting Interest

Language & Symbols

Comprehension

Expression & Communication
We don’t learn from experiences, we learn by reflecting on the experience.

-John Dewey
Module Assessment

Design Engineering Project 201

CAM Assembly Station

Project Brief

"Design and build a prototype CAM assembly station that operates via the means of an existing central drive shaft"

Introduction

A multi-national medical device company are in the process of re-designing a medical product, as shown in Fig. 1 & Fig. 2 and are confident that this re-design will be approved and validated. As a result, they have sought tenders from a number of engineering companies for a modification to an existing assembly machine. The company has also specified their requirements to use standard parts from recognised engineering suppliers that they use as part of their preventative maintenance procedures.

A local engineering company has secured a contract to modify this existing assembly machine, to incorporate an additional CAM assembly station to the existing machine set-up.

The machine concerned is a linear indexing assembly machine, consisting of a series of CAM actuated stations used for assembly, in-line inspection and pick and place type of operations. CAM-driven systems, similar to the machine shown in Fig.3, have numerous advantages, including their reliability, durability and ease to run. Low maintenance and superior life are among the biggest benefits of cam-driven indexes. When maintenance is required, advanced skills are not needed.

Updates

Report

Presentation

3D CAD Model
Remove those border walls
Accessible Assessment

“Live” Project Brief

CAM Mechanism Motions

The new assembly station is required to pick and place the seal cap, as shown in Fig. 4, from a feeder track onto the modified sample part. The modified sample part is located on a fixture, as shown in Fig. 5, which indexes after one full rotation of the central drive shaft.

The required motions are as follows:

1. Two separate CAM based motions, that occur through the rotation of the central drive shaft. The motions are required to lift the cap from the feeder track and place the cap onto the modified sample part. This will require a vertical rise of 25mm and a horizontal movement of 60mm. These dimensions are determined from the existing machine set-up as shown in the assembly drawings available on the moodle page and in this accompanied video, click here.

CAM Assembly Station Mounting

The new station has to be secured to the existing machine using the four M16 tapped holes in the skeleton machine, available on the moodle page and highlighted in this accompanied video, click here. Once the new station is aligned with the central drive shaft, two extra dowed holes should be drilled to maintain the necessary precision in this machine.
Project Updates

Multiple Means of Engagement

Recruiting Interest
- Optimised individual choice and autonomy
- Enhancing learner motivation and persistence

Multiple Means of Action & Expression

Executive Functions
- Enhanced capacity for monitoring progress

Expression & Communication
- Use multiple media for communication

Audio & Visual

Storyboard
Engagement/Action & Expression

Recruiting Interest
Enhancing learner motivation and persistence

Expression & Communication
Access to tools and assistive technologies
Conclusion

• A successful outcome for all concerned.

• The “Live” project brief was seen as a significant improvement and the information presented was much clearer, in terms of visualizing what was required from the project and the importance of certain aspects of the mechanism that weren’t as obvious in the initial brief.

• Students liked the autonomy they were given in the project updates and the presentation format.

• Students also spoke about the physical materials made available in the tutorials and how it helped them visualize what components they may incorporate into their designs.
Thank you for listening

Any Questions?